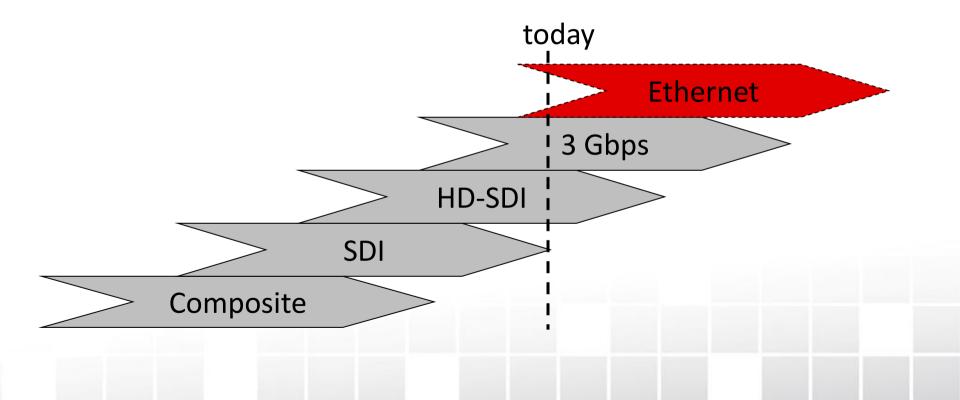
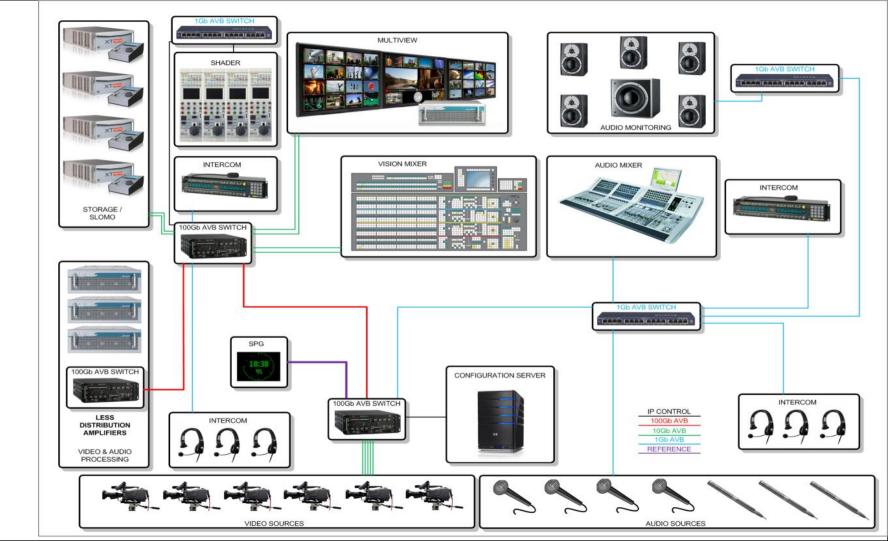

Video over Ethernet

Jan Eveleens Chief Executive Officer Jan.eveleens@axon.tv

Where Content Comes to Life


Live Production as we know it



°AXON

Live Production infrastructures: the next wave !

What is AVB ?

- AVB = Audio Video Bridging
- A set of standards created by the IEEE
- From the charter of the IEEE AVB task group:

"specifications that will allow time-synchronized low latency streaming services through 802 networks"

The AVB key elements

Audio Video Bridging (AVB)

Time Synchronization

Traffic Shaping

Bandwidth Reservation

Configuration

AVB terminology

Stream

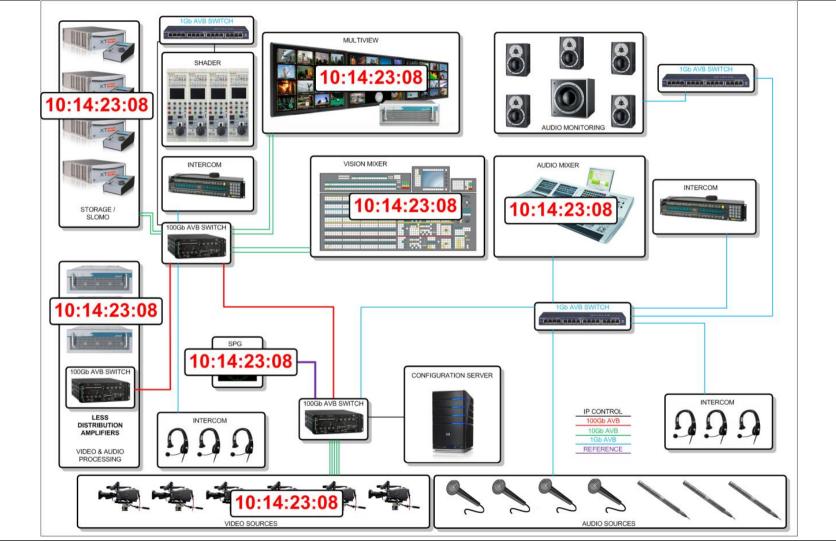
 A "pipe" that contains one or more channels of audio and/or video data in an AVB cloud

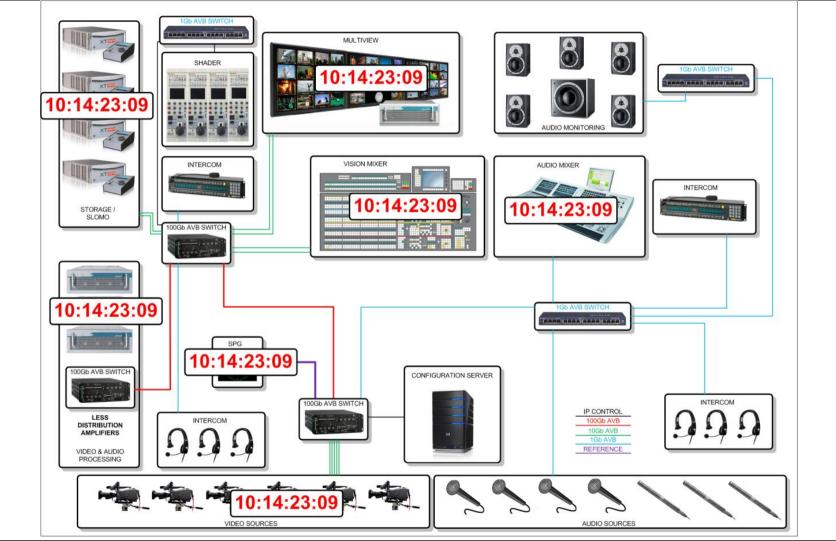
Talker

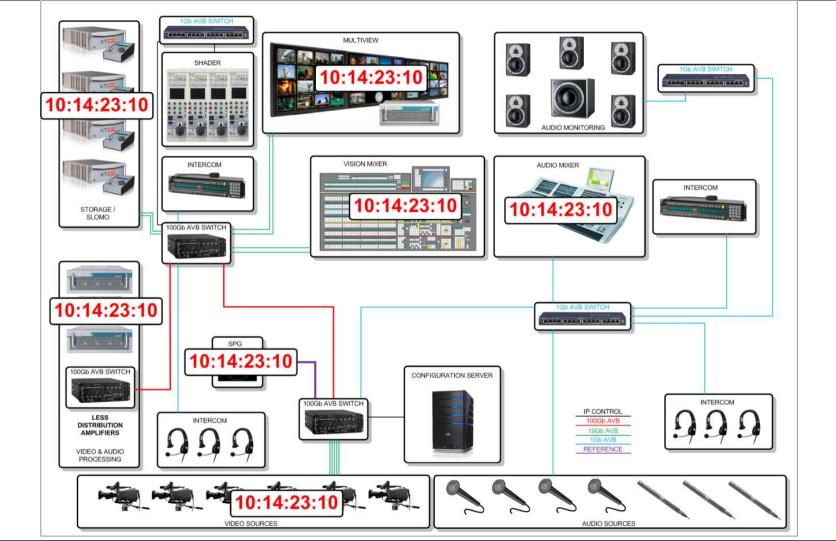
An entity in the AVB cloud that can send a stream

Listener

An entity in the AVB cloud that can receive a stream

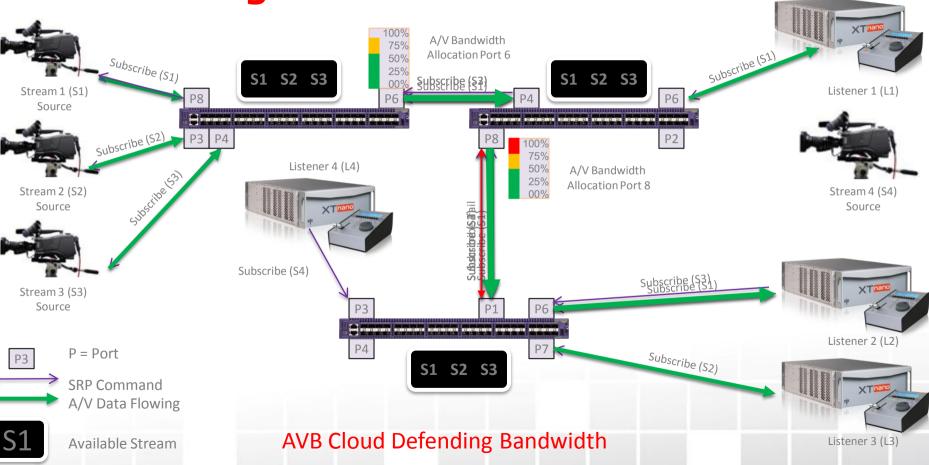

Controller


 An entity on the network which configures and connects Talkers and Listeners in an AVB network



AVB synchronization

- Guarantees accurate **absolute** timing of all AVB enabled nodes
- IEEE802.1AS is a special (more tightly defined) profile of IEEE1588
- Uses timestamp that is exchanged regularly between all nodes
 - The timestamp is based on an EPOCH absolute reference time (0:00:00 Jan. 1, 1970)
 - Switches will measure delay in switch and add correction factor to timestamp message
 - Each node receives original timestamp plus cumulative delay thru the network Adding correction factor to timestamp results in actual time that is in sync
- No special reference infrastructure is needed
 - No need for extra Cables
 - No reference distribution amplifiers (DA's)



Admission Control/bandwidth management

- This technology makes sure that the payload (audio and video) can use a predefined amount of the bandwidth.
- For AVB audio this is 75% of the maximum data rate (often 1Gb) Ethernet)
- The other 25% of bandwidth can be used for other data
- AUDIO & VIDEO DATA This percentage is adjustable by the end user depending on switch flexibility on a port by port basis
- When available control and may use more bandwidth and video data need less

CONTROL AND OTHER DAY other data as long as audio

Subscribing to a Stream

°/XON

Forwarding, Queuing & Traffic Shaping

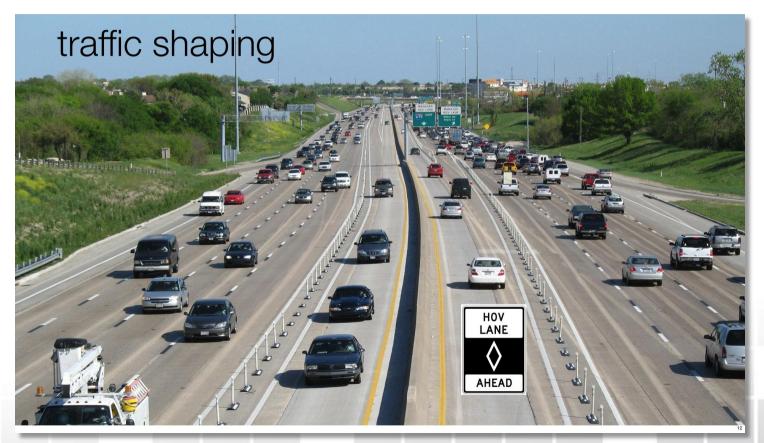
Priority based scheduling

- Time sensitive streams have highest priority (Audio & Video)
- Other data can eventually be passed but as a factor of waiting time and available space. (data that is in a queue for a longer time will raise in the priority scale).

Traffic shaping: AVB nodes must `behave'

- Avoid bursts in the network as this can create momentarily peaks in bandwidth on the network which may exceed capacity of link buffers-> packet drop !
- No jumbo-frames !

Example: Ethernet packets in light Traffic


Example: Ethernet packets in heavy Traffic

heavy traffic

Example: Ethernet packets in an AVB system

AVB Configuration Protocol

Discovery

Devices announce their presence to any listening controller

Configuration

Controllers learn more about devices of interest and configure them

Connection Management

Controllers make connections between Listeners and Talkers

Control

Controllers interact with devices to control gain, phase, timing etc.

IEEE 1722 RAW Video Format - 1

- Transmit (only) (active) video
 - audio, data as separate streams
- Save bandwidth (can be upto 40% !) vs SDI format
 - Vertical blanking can still be send (optionally)
- Horizontal resolution (active picture): upto 65535 pixels (16-bit field)
- Vertical resolution (active picture): upto 65535 pixels (16-bit field)
- Frame-rate: 24, 25, 30, 35, 85 Hz
 - Multiplier: 1, 2, 3, 4
 - Including all 1000/1001 variants
- Bit-depth: 8,10,12 or 16 bit
- Pixel format: 4:1:1, 4:2:0, 4:2:2, 4:4:4,
- Color space/coding: YCbCr, sRGB, XYZ, YCM, Bayer, BT601, BT709,

IEEE 1722 RAW Video Format - 2

	Active Line 1	Packet 1	Packet 2	Packet 3		
	Active Line 2	Packet 4	Packet 5	Packet 6		
	Active Line 3	Packet 7	Packet 8	Packet 9		
	Ancillary Data		Active Video (Image Data)		Packet n	
	Last Active Line	Packet n-2	Packet n-1	Packet n		
	Last Active Line	Packet n-2	Packet n-1	Packet n		
Active pixels	ls sample	e words Bits	s per Packets pe		Payload siz	
	ls sample per	e words Bits pixel sampl	s per Packets pe e word	er Line Packet P		
720	ls sample per	e words Bits pixel sampl 2 1	s per Packets pe e word	er Line Packet P	Payload siz	
	ls sample per	e words Bits pixel sampl 2 1	s per Packets pe e word	er Line Packet P		
720	ls sample per	e words Bits pixel sampl 2 1 2 1	s per Packets pe e word	er Line Packet P	900	

20

Typical characteristics of an AVB network

- All nodes are <u>fully synchronised</u> to a (very stable) network clock
 - Allows very accurate recovery of media clocks
 - SDI can be recovered within broadcast quality jitter specifications
 - Audio clock can be recovered maintaining phase relation
- Low latency: typically <u>2ms</u> overall network delay
 - Allows for complex/distributed networks (multiple hops)
- The network <u>self-manages bandwidth reservation</u> such that links will never get overcommitted and/or packets are dropped
- Uses <u>multi-cast</u>, so only one copy of each active source on any given link or backbone

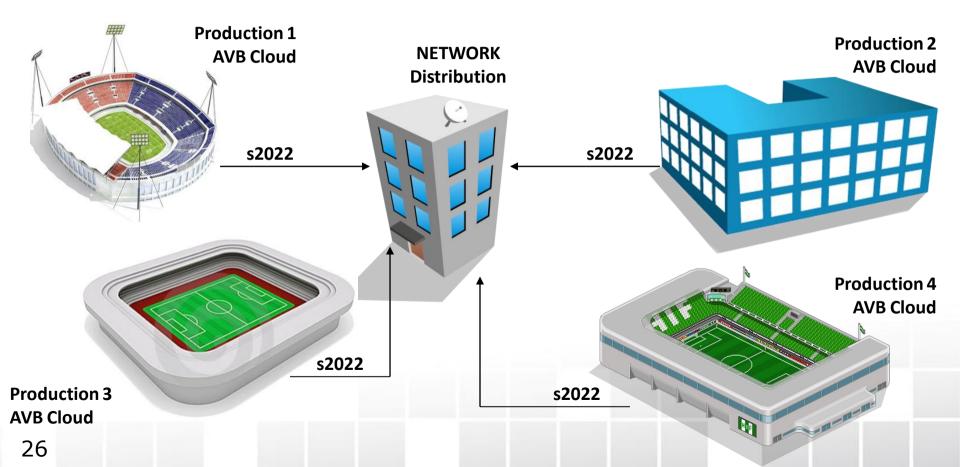
How real is Ethernet AVB ?

- 100Mbps, 1Gbps, 10Gbps, 40Gbps and 100 Gbps Ethernet AVB switches are shipping
- Several professional AVB audio products on the market from several vendors:
 - Audio processors, audio consoles, speakers, etc
 - Intercom systems
- First broadcast quality AVB video products have started shipping
- Compliance testing and certification process is up and running

ESPN in the USA is on-air with AVB audio !

"The audio infrastructure here is primarily AVB," says Jonathan Pannaman, senior director of technology, ESPN. "We have a little MADI transport in parts, but even that will be converted to AVB at some point. The entire comms infrastructure is all AVB, from the [router] core to the panels."

Relevant companies with AVB products (or are working on it)



Ethernet AVB vs SMPTE2022-6

Ethernet AVB	SMPTE 2022-6	
 Complete framework/solution for real-time, low-latency audio, video and data transport 	 Specifies only transport layer protocol 	
 Includes (clock-)synchronisation 	 No (clock-)synchronisation 	
 Includes bandwidth management/QoS 	 No bandwidth management/QoS 	
 Supports separate transport of video, audio and (ANC) data 	 Video is transported as encapsulated SDI, no solution for audio or ANC data (+ waste of bandwidth !) 	
 Allows for `any' type of future video format 	 Limited to (existing) SDI formats 	
 Plug-and-play 	 IP addresses management (fiddling) 	

AVB and s2022 hand in hand

°/XON

A very important element: *interoperability*

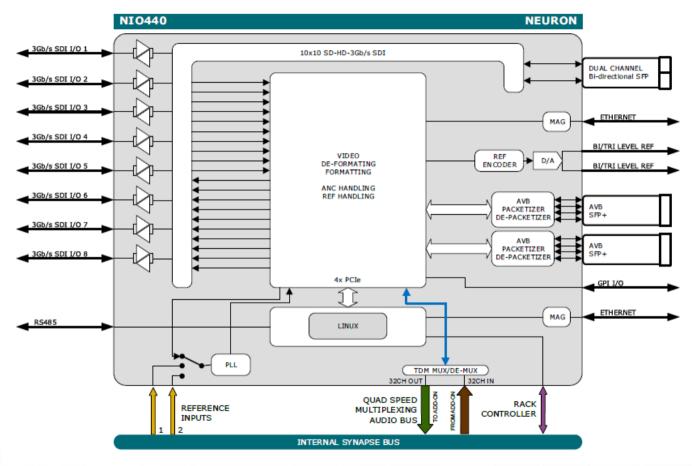
Ensuring that AVB nodes talk to AVB nodes

AVnu Alliance

AVnu Alliance members (overview)

Summarising the key benefits of Ethernet - AVB

- Based on <u>existing</u> and <u>open</u> <u>standards</u> from a very reputable and succesful standards body (IEEE)
- Provides <u>one framework</u> for reliable, time-synchronised, real-time transport of <u>video, audio and data</u>
- <u>Proven technology</u> that is <u>available now</u>: large professional AVB audio systems being deployed in the field
- Interoperability is going to be taken care of: <u>AVnu alliance</u>
- <u>Plug-and play</u>: no conflicts or fiddling with IP addresses, etc
- <u>Fool-proof</u>: the network is self-managing, it does not rely on the skills of network engineers or a (proprietery) software management layer.
- <u>Perfect co-existence</u> (and reserved bandwidth for) with standard IP traffic (eg. control, monitoring, etc)


NEURÛN

ETHERNET AVB

30

Fully powered by Neuron

AXON

VIDEO BRIDGING

MOXI

UP/DOWN/CROSS CONVERSION

LINE ME